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The Definition of the Pressure Tensor in the Statistical 
Mechanics of Nonuniform Classical Fluids 
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By means of a generalization of the similarity transformation introduced by 
Bogoliubov and Green to calculate pressure, we derive a unique expression of 
the pressure tensor for a system of interacting point particles in equilibrium 
according to the canonical ensemble. Our result confirms the expression 
originally reported by Irving and Kirkwood. 
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1. I N T R O D U C T I O N  

The pressure tensor, defined as the negative of the equilibrium average of 
the microscopic stress tensor, is a basic thermodynamic quantity in the 
statistical mechanical theory of inhomogeneous fluids and, in particular, in 
the theory of the thermodynamics and structure of interfaces [1-3] .  

For  a classical dynamical system of interacting point particles, the 
microscopic stress tensor a,j is composed of two parts, the kinetic part  ,~k) 
associated with the momentum transport, and the configurational part  a!?  ) q 

that arises from the intermolecular forces. The calculation of the first part  
presents no problem, but for the second part  it has not been possible so far 
to arrive at a unique expression [1, 2]. Quite the contrary, the most 
widespread opinion at the present time is that the stress tensor cannot be 
uniquely defined, although the problem is not yet considered as definitively 
settled [4].  Recently the whole matter  has been reanalyzed by Schofield 
and Henderson [51, with the conclusion that there are infinitely many 
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ways of defining a!0r related to the infinitely many paths in space joining 
two interacting particles. Neverthless, the choice, originally made by Irving 
and Kirkwood [6], corresponding to a straight path, is the most natural, 
and the one generally made, in either equilibrium I-3] or nonequilibrium 
situations [7]. 

It does not seem to the present author, however, that the claimed 
indetermination, which would have the structure of a gauge arbitrariness, 
corresponds to the physical situation. In principle at least, one can deter- 
mine the components of the stress, in every point of a nonuniform fluid by 
measuring the response of the system to an appropriate local deformation. 
The arbitrariness in the current definition arises from the ambiguity 
implicit a priori in the notion "force acting across a surface element dS." As 
a matter of fact, although the formalism of classical statistical mechanics is 
based on the concept of direct action at distance between molecules, a 
given molecule cannot distinguish from which other molecule comes the 
force acting on it, but can see only the resultant field created by all the 
other molecules in the fluid, either "outside" or "inside" the tangent plane 
through the surface element dS. It is only a posteriori, after the calculation 
of the stress tensor has been made according to an alternative definition, 
that the equation [6] 

~l~)(r) dSj = "the force acting across dS" (1) 

can be used, not to calculate a~q '), but as a definition of the rhs. 
The theoretical relevance of the problem outlined above can hardly be 

overestimated, because an eventual arbitrariness in the definition of the 
stress tensor carries through to the pressure tensor and this, in turn, to the 
definition of the surface of tension and other interesting local quantities 
such as the scalar pressure, defined as one-third of the trace of the pressure 
tensor. 

In a recent paper [8], we have proposed a new definition of the local 
pressure tensor as the functional derivative of the free energy with respect 
to the local strain tensor. The new definition is free from any ambiguity 
and provides directly a symmetric tensor [9]. We explicitly calculated the 
pressure tensor in the case that the free energy is known as a functional of 
the one-particle density and, in the framework of the square gradient 
approximation, confirmed the expression originally reported by Lovett 
[10]. 

The free energy as a functional of the density is obtained most directly 
in a grand canonical ensemble [ 11 ]. In the present paper we wish to report 
on a new unambiguous calculation of the pressure tensor in a canonical 
ensemble. Our method will then appear quite explicitly as a generalization 
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of a device introduced independently by Bogoliubov [ 12] and Green [-13 ] 
to calculate the scalar pressure in a homogeneous fluid and later adapted 
by Buff [14], McLellan [15], and Harasima [16] to derive a statistical 
mechanics expression for the surface tension. While these authors 
introduced new reduced variables by means of a global similarity transfor- 
mation, we introduce new particle coordinates by means of a general point 
transformation. The method is fully described in the next section. Our 
calculation confirms the Irving and Kirkwood definition [6]. 

2. E V A L U A T I O N  OF THE P R E S S U R E  T E N S O R  IN A 
CANONICAL ENSEMBLE 

The direct calculation of the pressure tensor, according to the familiar 
definition of classical elasticity, namely, 

p ~  = - (2) 
T 

where u~  is the strain tensor and F is the Helmholtz free energy, is not 
possible because one does not know the explicit dependence of F on the 
strain. However, if one regards the deformation as a coordinate transfor- 
mation, one can write Eq. (2) in the alternative, equivalent forms [8] 

1 6F 

6F 

(3a) 

(3b) 

where g is the determinant of the matrix IIg~]l, g~p are the components of 
the metric tensor, and with the subscript and superscript indices we, respec- 
tively, denote covariant and contravariant components. The problem is 
then to find out the explicit dependence of F on the g~ .  

To this purpose let us consider a classical system of N identical point 
particles of mass m, in the presence of an external field ~0e, which acts 
independently on each particle. In classical statistical mechanics it is 
customary to identify the configuration of the system by means of the 
position vectors r~, whose components r~ (~= 1, 2, 3) are taken in the 
direction of three rectangular axes. The conjugate momenta are then 
p~=m/'~ and the hamiltonian H will consist of three parts: the kinetic 
energy K=r,i'~p~/2m, the energy of interaction among the particles 
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�9 (r 1,..., r,), and the energy of interaction of all the particles with the exter- 
nal field Z~7 <p~(r;), so that 

n p2 n 
i H( r l . . .  r . ;  pl �9 �9 �9 p,) = ~/~--- + ~(r l  �9  r,) + ~,i q~(ri) (4) 

1 z m  1 

The Helmholtz free energy F(T, V, N) for such a system is then given 
by 

F(T, V, N) = - k T l n  Z(T,  V, N) 

where Z(T, V, N)  is the canonical partition function 

1 ; (  
H Vii dr~dpi Z(T, V , N ) =  exp - ~ - ~  , 

(5) 

(6) 

It follows from Liouville theorem that the partition function given by 
Eq. (6) and, consequently, the free energy given by Eq. (5) are invariant 
with respect to a canonical transformation and therefore, in particular, 
with respect to a point transformation, namely, an unrestricted coordinate 
transformation. 

In order to exploit this invariance property of the free energy we con- 
sider a special point transformation. Instead of identifying the position of a 
particle, in the single particle configuration space, by means of three rec- 
tangular coordinates r~, we adopt three general curvilinear coordinates x~ 
so that 

rT= r~(xPi ), .~ t3r~ .o a~(xi)S:~i (7) r i = dx----~ x~i = 

The reduced variables introduced in Refs. 12-16 are of this type, but 
with a~ = l~6~ and l~ = const. 

We now express the Hamiltonian given by Eq. (4) in terms of the new 
variables. 

For the kinetic energy one gets immediately from Eqs. (7) 

I " 
K=-~ m ~ i  gca~(xi) x~-~i (8) 

1 

where we have introduced the covariant components g~,(xi) of the metric 
tensor defined by 

3 

g~#(Xi) = Z~' a~a~ ( 9 )  
1 
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But in the Hamiltonian given by Eq. (4) we need the kinetic energy 
expressed in terms of the conjugate momenta defined by 

8K 
Yi~ -- -- mg~q~(xi)2~i = m2i~ (10) 

85~ 

so that the kinetic enery can be written as 

m n 1 n 

K= -~ Ei g~#(xi).:ci~.~il3 = ~ Ei  g~[~(Xi) Yia Yifl 
1 z m  l 

Introducing the microscopic number density/5(x) defined by 

(11) 

/7 

~ ( x ) = ~ , g ( x - x , )  (12) 
1 

so that ~/5(x) dx = N, where dx = I]~ dx~, we can rewrite K as an integral 
over the whole volume occupied by the system 

K-• - 2m ~(x) g~t~(x) y~ y,~ dx (13) 

Similarly, we can rewrite the energy of interaction with the external 
field as 

n t ~  

E, ~0~(r,) = J p(x) (pc(x) dx (14) 
I 

As far as ~b(rl ' - . r , )  is concerned it will depend on the g ~  through the 
distances between the particles. For the sake of comparison and 
definiteness we assume that q~ is a sum of pair interactions 

1 n r t  

~(ra "'" r~) = ~  ~ i  ~ j ~ i  cp(r~j) (15) 
1 1 

where r~/= Ir/-r~I, although there is no difficulty, at least in principle, to 
perform the calculation in more general cases. 

In curvilinear coordinates the distance r~:, between particle i and par- 
ticle j, may be expressed as follows. Let x~=x~(2) (~=  1, 2, 3) be the 
parametric equations of the oriented (from i to j)  straight line joining the 
two distanct particles, and let the parameter 2 be so chosen that x~(0) = x~ 
and x~(1)=x~. Then 

I o ~  dx~dx~ 
r~= d2 g~(2)  d2 d2 (16) 
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where g~,(2) is the value of covariant components of the metric tensor at 
the point x(2) on the straight line segment between xi and xj, so that 

g~f(2) = f 6 [x- -x(2) ]  g~f(x) dx (17) 

With these preliminaries it is not difficult to calculate the pressure ten- 
sor according to Eqs. (3)-(6). We have 

6F _kTl_ 6Z I 6H ) 6g~f(x)- Z Og~f(x)- ~ (18) 

where the derivative is a functional derivative made at constant tem- 
perature. On the other hand, from Eqs. (11)-(13) we obtain 

6K 1 
6 g ~ f l ( X )  : ~ m  p ( x )  Y ia  Tiff  (19) 

while according to Eq. (14), the interaction with the external field gives no 
contribution. As far as the intermolecular energy is concerned, we have 

8,I) _1~" ~ &o 8r o. (20) 
X.ai /. jv~ i - -  _ _  6g~f(x) 2 I 1 8rij6g~,(x) 

and taking into account Eqs. (16) and (17), we have 

12, 2,+ (dx  dxf /[2 / dx l 6g~,~(x)-2 I , '-~jr~j d2\  d2 d,a,//[_ "~/g=f(2)-d-f.-d--SJ 6Ix-x(2)] 
(21) 

Finally, substituting Eqs. (18), (19), and (21) into Eq. (3b), we get the 
following expression for the pressure tensor 

(22) 

where we have taken into account that for any invariant functional S of the 
metric tensor, one has the identity 

6S 
-- f 6g~,~(x)6S 6g=e(x ) dx 6s = [ 6g~f(x) , I x  = 

d 
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G o i n g  back  now to Car tes ian  coord ina tes ,  so tha t  g ~ t ~ = 6 } w / g =  1 

x~(2)  = r~'(1 - 2) + ,w/ and,  consequent ly ,  (dx  / d 2 )  - r) - r e - ~ and  r o = 

~ / g ~ ( 2 ) ( d x ~ / d 2 ) ( d x ~ / d 2 ) ,  Eq. (22) becomes  

&P r~ d 2 6 [ r - ( 1 - 2 ) r i - 2 r j ]  / P ; P / ~ f ( r - r ; )  - i / ~ j ~ i - ~ -  - -  

P ~  = y i \  m i ory r 9 

(23) 

This  express ion is ident ical  to  tha t  ob t a ined  by I rv ing and  K i r k w o o d  
[-6] s tar t ing f rom Eq. (1); however ,  in the present  ca lcu la t ion  there is no 
ambigu i ty  in the choice of  the pa th  jo in ing  two molecules.  Indeed  the pa th  
come in only in the defini t ion of  the d is tance  be tween two par t ic les  and  this 
is uniquely  defined as the length of  the s t ra ight  line segment  jo in ing  them. 
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